n-Torsion clean and almost n-torsion clean matrix rings

نویسندگان

چکیده

We completely determine those natural numbers $n$ for which the full matrix ring $M_n(F_2)$ and triangular $T_n(F_2)$ over two elements field $F_2$ are either n-torsion clean or almost clean, respectively. These results somewhat address settle a question, recently posed by Danchev-Matczuk in Contemp. Math. (2019) as well they supply more precise aspect nil-cleanness property of $n\times n$ all naturals $n \geq 1$, established Linear Algebra Appl. (2013) Breaz-Calugareanu-Danchev-Micu again & (2018) Ster Indag. (2020) Shitov.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost clean rings and arithmetical rings

It is shown that a commutative Bézout ring R with compact minimal prime spectrum is an elementary divisor ring if and only if so is R/L for each minimal prime ideal L. This result is obtained by using the quotient space pSpec R of the prime spectrum of the ring R modulo the equivalence generated by the inclusion. When every prime ideal contains only one minimal prime, for instance if R is arith...

متن کامل

Strongly clean triangular matrix rings with endomorphisms

‎A ring $R$ is strongly clean provided that every element‎ ‎in $R$ is the sum of an idempotent and a unit that commutate‎. ‎Let‎ ‎$T_n(R,sigma)$ be the skew triangular matrix ring over a local‎ ‎ring $R$ where $sigma$ is an endomorphism of $R$‎. ‎We show that‎ ‎$T_2(R,sigma)$ is strongly clean if and only if for any $ain‎ ‎1+J(R)‎, ‎bin J(R)$‎, ‎$l_a-r_{sigma(b)}‎: ‎Rto R$ is surjective‎. ‎Furt...

متن کامل

Strongly Clean Matrix Rings over Commutative Rings

A ring R is called strongly clean if every element of R is the sum of a unit and an idempotent that commute. By SRC factorization, Borooah, Diesl, and Dorsey [3] completely determined when Mn(R) over a commutative local ring R is strongly clean. We generalize the notion of SRC factorization to commutative rings, prove that commutative n-SRC rings (n ≥ 2) are precisely the commutative local ring...

متن کامل

Generalized f-clean rings

In this paper, we introduce the new notion of n-f-clean rings as a generalization of f-clean rings. Next, we investigate some properties of such rings. We prove that $M_n(R)$ is n-f-clean for any n-f-clean ring R. We also, get a condition under which the denitions of n-cleanness and n-f-cleanness are equivalent.

متن کامل

WEAKLY g(x)-CLEAN RINGS

A ring $R$ with identity is called ``clean'' if $~$for every element $ain R$, there exist an idempotent $e$ and a unit $u$ in $R$ such that $a=u+e$. Let $C(R)$ denote the center of a ring $R$ and $g(x)$ be a polynomial in $C(R)[x]$. An element $rin R$ is called ``g(x)-clean'' if $r=u+s$ where $g(s)=0$ and $u$ is a unit of $R$ and, $R$ is $g(x)$-clean if every element is $g(x)$-clean. In this pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ???????? ?????? ??????? ?????????

سال: 2021

ISSN: ['0536-1036']

DOI: https://doi.org/10.26907/0021-3446-2021-1-52-63